Ergodic Theory - Week 3

Course Instructor: Florian K. Richter
Teaching assistant: Konstantinos Tsinas

1 Birkhoff’s pointwise ergodic theorem

P1. Let (X,B,u,T) be a measure preserving system, f € L'(u) and a € R. Show that, for almost
all z € X, the limit

1 N-1
lim — ™
Gim 7;) e(na) f(T"x)

exists.

Let (T,B(T),\,S) denote the rotation Sz = x + a (mod 1) on the circle T with the Borel
o-algebra and the Lebesgue measure and consider the function g(y) = e(y). Then, a simple
calculation implies that S™g(y) = e(y + na) for all y € T. Consider the product system
(X xXT,BxB(T), ux AT xS), which is measure-preserving (see Exercise Sheet 1). We apply
the pointwise ergodic theorem for the function f ® g defined by (f ® g)(z,y) = f(z)g(y). We
infer that for almost all (x,y) € X x T, the limit

| N1
NEIEOON HZ:%(T x S)" (f®g)(z,y)

exists. Note that

(T S)*(f(x)g(y)) = f(T"x)g(5"y) = e(y + na) f(T"x).

We conclude that for almost all (z,y) € X x T, the limit

=z

. e(y) n
Jm = 2 e(na)f(T"x) (1)

exists. Let A C X xT be the set of (z,y) for which the limit in (1) exists, so that (ux\)(A) = 1.
Fubini’s theorem implies that

/T (/x 1A(x’y)d“(”5>> dA(y) = 1.

We conclude that there exists at least one yo € T such that [ 14(2,yo)du(z) = 1 (actually,
almost all y € T satisfy this property). For this yo, we have 14(x,y0) = 1 for almost all x € X
(otherwise the integral would not equal 1), and, thus, we infer that for almost all z € X, the
limit

lim
No+o0o N

e(na) f(T"x)

exists. The conclusion follows.




P2. In this exercise, we study the ergodic theorem for non-integrable functions.

Let (X,B,u,T) be an ergodic measure-preserving system. Suppose f > 0 is a measurable
function such that [ fdu = +o0o and define

ff(x) = hmlnf— Z f(T"x)

N—+oo N

as well as the set

(a)

(b)

(c)

A={z e X: f*(z) < +o0}

Show that f* is T-invariant.
Hint: Use the identity

N+1[ 1 & 1 = 1

Let x € X. For any N € N, we have the identity

N+1[ 1 &, 1= 1
N <N+17§f(T 37)) :N;f(T (Tx))—l—ﬁf(a;)

Taking limits along a subsequence Ny where the left-hand side converges to f*(z), we get
that

Np—1
Ii (T™(Tx)

This implies that f*(z) > f*(Tz). Doing the same for the right-hand side, we get the
reverse inequality

fH(x) < A (Tw).
We conclude that f*(x) = f*(Tx) and since x was arbitrary, we deduce that f* is T-
invariant.

Show that the function f* - 14 is constant almost everywhere on X.

Denote g = f* - 14 for brevity and notice that ¢ is a measurable function that takes
values in R>o. We show that g is T-invariant. We know that f* is T-invariant, which also
implies that the set A in the statement is also T-invariant. Then, for any x € X, we have

o(2) = {f*(x), red {f*oT(x% e

0, z ¢ A 0, Tz ¢ A = ((f"1a) o T) (2) = goT(x)

verifying our claim. It follows by the ergodicity of T that g equals a constant for almost

all point z € X.

Conclude that u(A) = 0 and thus

lim (T"z) = +o0
N—+o0 N Z f

for almost all z € X.

Hint: Construct an increasing sequence of bounded functions f,,, that converges to f
pointwise.



Suppose that p(A) > 0. Since g is constant almost everywhere, we have that u(A) =1
and that there exists a real constant ¢ such that f*(x) = ¢ for a set B C A of measure 1.
For each m € N, define the function

jM@:{mme<m

0, otherwise

Then, f,, is an increasing sequence of non-negative measurable and bounded functions
such that f,,, — f pointwise. The monotone convergence theorem implies that

/fmd,u—>/fdu:+oo.

N-—1
fo(e) = liminf = 3 fou(T"2)
n=0

Now, we define

N—o+oo N

and notice that fy, (z) < fr,i(z) < f*(x) for all z € X, since f(z) < frri(z) < f(2).
In addition, the pointwise ergodic theorem implies that the liminf defining f} is actually
a limit for almost all z € X. Due to ergodicity, we have

o) = [ S

for almost all z € X.
The inequality f (z) < f*(z) yields

/ﬁ@ﬁ/f@zéﬁwzq

since p(B) = 1. Taking limits as m — 400 and using the monotone convergence theorem,
we get ¢ > h’rE [ fmdu = +00, a contradiction. Thus, we infer that p(A) = 0 and,
m——+00

thus,

N-1
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for almost all x € X. Equivalently,

1 N-1
’ o n —
NLHEOON nz_%f(T x) oo

for almost all z € X.

P3. Consider the system (T, B(T), 1, ') where p is the Lebesgue measure and T'(z) = gz mod 1 for
q > 2 a fixed integer. If x € R we say that z is written in its ¢g-ary digit expansion if

v =z)+ 3 4,

=1 1

for {a;}jen € {0,1,...,¢— 1}, so that for all J € N there exists j > J such that a; # ¢ — 1.



(a) For x € R, prove that ay(x) = 4 if and only if T# 'z € [é, %) with ¢ € {0,1,...,¢q — 1}.
Additionally, prove that ai(T'z) = agy1(z) for all z € R and k > 1.

To keep notation simpler in our arguments, we will apply T to any x € R. By this, we
mean that we apply the transformation on the image of x under the projection R — R/Z
(i.e. we apply T to {z}). Note that this is well-defined, meaning that two elements z,y
with the same fractional part satisfy Tz = T'y.

The main observation is that if

Jj=1 ¢
then
+oo a ({E)
¢"xr =my + ap(x) + Z q]j_k
j=k+1
for an integer my. Thus,
by N 450
The =" pras (mod 1) (2)
j=k+1

If ax(x) = ¢ then we have that

Tk:

. 9]
i a;(x)
j k—‘rl:i—i_ E ﬁ (mod 1)
Jj= k+1 j= 4

Notice that
> 1
0s > U S
Jj=k+1 Jj=2

which implies that TF 1z € [é, %) The inequality is strict, because not all digits can
be equal to ¢ — 1 from some point onward.

Conversely, assume that TF 1z € [;, H(;l) This is equivalent to
1 1+ 1
¢ = qJ ’“* T og

j=k+1
As Z] kil q(;](kll € [0,1/q) by our previous calculation, we have

1 —1 a ,+ 1
< k(.%')<2+ :
q q q

which implies ay(z) = 1.
The final part of the statement is obvious since if T~ 1y € [; ”gl) we know that ax(y) = 1,
so plugging in y = Tz the same statement implies that ax,1(x) = i.

(b) Let ci,...,cx be a collection of digits in {0,...,¢ — 1}. Show that there exists a unique
i €{0,...,¢" — 1}, such that

. . v 1+1
{a1(x) =c1,...,ax(x) = ¢x} if and only if {z} € [qk’ qk> .



Derive the equivalence
. . i i+ 1
{ant1(x) =c1,. .., ansk(x) = ¢} if and only if {T"z} € [qk’ qk> .

We will prove our claim for i = ¢*~!c;+- - 4qcp_1+cp. We establish the second equivalence
since it implies the first one. We write x in its base-¢ expansion

o a;(z)
x=|z]+ Z "
=1

and observe that

{qnx}zw+...+a"+i(m)+ ! Z m ) (3)

q q ji>n+k

Observe that the last term in the sum is strictly smaller than qik. This follows by bounding
all digits aj(x) by ¢ — 1 (this inequality is strict, since there is at least one digit not equal

to ¢ — 1) and then computing the sum of the geometric series. Thus, {¢"z} € [q%, ’;r—kl) if
and only if
qk_lan-i-l(x) ++ an+k(x) _ L
" q"
Using the uniqueness of the base ¢ expansion of the integer i, we derive the equalities
an+1(x) = c1,y ..., antk(z) = ck. The conclusion follows.
(c) We say that a number x is normal in base g if for any finite pattern of digits {c1,...,cx} €
{0,q — 1}*, we have
lm Hn < N:ap(z) =c1,...,an1p5-1(2) = i}l _ 1
N-o0 N qk’

where ay,(x) are the digits of = in its base g expansion. Namely, all patterns with k digits
appear with the same frequency. Show that x is g-normal if and only if the sequence {¢"z}
is uniformly distributed mod 1.

Hint: To prove uniform distribution, verify the definition first for intervals of the form
[i/q", (i+1)/¢*) and then approximate a general interval by intervals with endpoints rational
numbers, whose denominators are powers of gq.

First of all, we prove that if  is g-normal, then for every k¥ € N and i € {0,...,¢* — 1}
we have

-1 (4)
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The left-hand side of (4) can be rewritten as

y HnSN:{qnx}e[qik,g—kl]}‘_ 1
Ngnoo N 7qk.




By the previous part, there exists a unique choice of digits ¢y, ..., ¢, such that

v o1+1
{q x} [ T] <~ a'n-I—l(x) :Cl7"'7a’n+k(x) = Ck.

Therefore, we can rewrite the last limit as

lim {n < N:apt1(z) =c1y.o oy anik () = i} _ 1
N—+oo N qk

which holds by the definition of normality in base ¢. This proves our claim that (4) holds.
Now, we prove that if A = [a,b) is a sub-interval of [0, 1], then

N

lim % SO TMA() = p(A). (5)

N—o0
n=1

Indeed, let P be the collection of Borel sets for which (5) holds. We know that P contains
the family {0} U {[-% ek @)}keN i€{0,...¢¢—1}- In addition, if A, B € P are disjoint, we have
that AUB € P, since

N N
%ZTHRAUB ZTn 14+ 1p(z ZT"]IA %ZTTL]IB(@’)
o n=1

n=1

— pu(A) + w(B) = p(AU B).

We conclude that P contains all intervals of the form [qlk, qj—k) or, equivalently, all half-
open intervals with rational endpoints whose denominators are powers of q.

Let A = [a,b) C [0,1) be an arbitrary interval and let £ > 0. Then, we can find half-open
intervals Ji, Jo with endpoints that are rational numbers with denominators powers of ¢,
such that J; € A C Jy and such that p(J2) —e < p(A) < p(Ji) + €. This follows from
the fact that the rationals of the form m/¢* are dense in [0,1]. Then, we have

hmlnf—ZT"llA >hm1nf—ZT 1, (z) > p(A) —

N—oo

Using J3 in place of J;, we conclude that

lim sup — Z T"1A(x) < u(A) +e.

N—oo n 1

Since € was arbitrary, we conclude that

N
z. 1 n _
Jim > T A () = p(A).

n=1

We can rewrite this as (recall A = [a,b))

Ll <N {g'a} € o, D)}
N—oo N

= u(A) = (b—a).



and, thus, {¢"z} is uniformly distributed.

Remark: Here, we note that (5) holds for intervals, but not for general measurable sets.
In particular, for any sequence x,, we can show that there exists a set of measure 1 that
does not contain any of the elements x,,.

We now prove the reverse implication. Assume (¢"x) is uniformly distributed mod 1. Let
ety €{0,...,g—1Yand let i = ¢*1c; +...+qcp_1+cp. Using part (b), we conclude
that
Hn < N:app1=c1,...,Gpek = Ci}| Hn < N:{q"z} € [qik)%)}‘
N B N '
Since ¢"x is equidistributed, we have

lim
N—~+o0 N

e Bl () &

The conclusion follows.



