
Ergodic Theory - Week 3

Course Instructor: Florian K. Richter
Teaching assistant: Konstantinos Tsinas

1 Birkhoff’s pointwise ergodic theorem

P1. Let (X,B, µ, T ) be a measure preserving system, f ∈ L1(µ) and a ∈ R. Show that, for almost
all x ∈ X, the limit

ĺım
N→+∞

1

N

N−1∑
n=0

e(na)f(Tnx)

exists.

Let (T,B(T), λ, S) denote the rotation Sx = x + a (mod 1) on the circle T with the Borel
σ-algebra and the Lebesgue measure and consider the function g(y) = e(y). Then, a simple
calculation implies that Sng(y) = e(y + na) for all y ∈ T. Consider the product system
(X ×T,B×B(T), µ×λ, T ×S), which is measure-preserving (see Exercise Sheet 1). We apply
the pointwise ergodic theorem for the function f ⊗ g defined by (f ⊗ g)(x, y) = f(x)g(y). We
infer that for almost all (x, y) ∈ X × T, the limit

ĺım
N→+∞

1

N

N−1∑
n=0

(T × S)n (f ⊗ g) (x, y)

exists. Note that

(T × S)n(f(x)g(y)) = f(Tnx)g(Sny) = e(y + na)f(Tnx).

We conclude that for almost all (x, y) ∈ X × T, the limit

ĺım
N→+∞

e(y)

N

N−1∑
n=0

e(na)f(Tnx) (1)

exists. Let A ⊆ X×T be the set of (x, y) for which the limit in (1) exists, so that (µ×λ)(A) = 1.
Fubini’s theorem implies that ∫

T

(∫
X
1A(x, y)dµ(x)

)
dλ(y) = 1.

We conclude that there exists at least one y0 ∈ T such that
∫
X 1A(x, y0)dµ(x) = 1 (actually,

almost all y ∈ T satisfy this property). For this y0, we have 1A(x, y0) = 1 for almost all x ∈ X
(otherwise the integral would not equal 1), and, thus, we infer that for almost all x ∈ X, the
limit

ĺım
N→+∞

e(y0)

N

N−1∑
n=0

e(na)f(Tnx)

exists. The conclusion follows.
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P2. In this exercise, we study the ergodic theorem for non-integrable functions.

Let (X,B, µ, T ) be an ergodic measure-preserving system. Suppose f ≥ 0 is a measurable
function such that

∫
f dµ = +∞ and define

f∗(x) = lim inf
N→+∞

1

N

N−1∑
n=0

f(Tnx)

as well as the set
A = {x ∈ X : f∗(x) < +∞}

(a) Show that f∗ is T -invariant.
Hint: Use the identity

N + 1

N

(
1

N + 1

N∑
n=0

f(Tnx)

)
=

1

N

N−1∑
n=0

f(Tn(Tx)) +
1

N
f(x).

Let x ∈ X. For any N ∈ N, we have the identity

N + 1

N

(
1

N + 1

N∑
n=0

f(Tnx)

)
=

1

N

N−1∑
n=0

f(Tn(Tx)) +
1

N
f(x).

Taking limits along a subsequence Nk where the left-hand side converges to f∗(x), we get
that

ĺım
Nk→+∞

1

Nk

Nk−1∑
n=0

f(Tn(Tx)) = f∗(x).

This implies that f∗(x) ≥ f∗(Tx). Doing the same for the right-hand side, we get the
reverse inequality

f∗(x) ≤ f∗(Tx).

We conclude that f∗(x) = f∗(Tx) and since x was arbitrary, we deduce that f∗ is T -
invariant.

(b) Show that the function f∗ · 1A is constant almost everywhere on X.

Denote g = f∗ · 1A for brevity and notice that g is a measurable function that takes
values in R≥0. We show that g is T -invariant. We know that f∗ is T -invariant, which also
implies that the set A in the statement is also T -invariant. Then, for any x ∈ X, we have

g(x) =

{
f∗(x), x ∈ A

0, x /∈ A
=

{
f∗ ◦ T (x), Tx ∈ A

0, Tx /∈ A
= ((f∗ · 1A) ◦ T ) (x) = g ◦ T (x)

verifying our claim. It follows by the ergodicity of T that g equals a constant for almost
all point x ∈ X.

(c) Conclude that µ(A) = 0 and thus

ĺım
N→+∞

1

N

N−1∑
n=0

f(Tnx) = +∞

for almost all x ∈ X.
Hint: Construct an increasing sequence of bounded functions fm that converges to f
pointwise.
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Suppose that µ(A) > 0. Since g is constant almost everywhere, we have that µ(A) = 1
and that there exists a real constant c such that f∗(x) = c for a set B ⊂ A of measure 1.
For each m ∈ N, define the function

fm(x) =

{
f(x), f(x) < m

0, otherwise
.

Then, fm is an increasing sequence of non-negative measurable and bounded functions
such that fm → f pointwise. The monotone convergence theorem implies that∫

fm dµ →
∫

f dµ = +∞.

Now, we define

f∗
m(x) = lim inf

N→+∞

1

N

N−1∑
n=0

fm(Tnx)

and notice that f∗
m(x) ≤ f∗

m+1(x) ≤ f∗(x) for all x ∈ X, since fm(x) ≤ fm+1(x) ≤ f(x).
In addition, the pointwise ergodic theorem implies that the lim inf defining f∗

m is actually
a limit for almost all x ∈ X. Due to ergodicity, we have

f∗
m(x) =

∫
fm dµ

for almost all x ∈ X.

The inequality f∗
m(x) ≤ f∗(x) yields∫

f∗
m dµ ≤

∫
f∗ dµ =

∫
B
f∗ dµ = c,

since µ(B) = 1. Taking limits as m → +∞ and using the monotone convergence theorem,
we get c ≥ ĺım

m→+∞

∫
fm dµ = +∞, a contradiction. Thus, we infer that µ(A) = 0 and,

thus,

lim inf
N→+∞

1

N

N−1∑
n=0

f(Tnx) = +∞

for almost all x ∈ X. Equivalently,

ĺım
N→+∞

1

N

N−1∑
n=0

f(Tnx) = +∞

for almost all x ∈ X.

P3. Consider the system (T,B(T), µ, T ) where µ is the Lebesgue measure and T (x) = qx mod 1 for
q ≥ 2 a fixed integer. If x ∈ R we say that x is written in its q-ary digit expansion if

x = ⌊x⌋+
∞∑
j=1

aj(x)

qj
,

for {aj}j∈N ⊆ {0, 1, . . . , q − 1}, so that for all J ∈ N there exists j ≥ J such that aj ̸= q − 1.
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(a) For x ∈ R, prove that ak(x) = i if and only if T k−1x ∈ [ iq ,
i+1
q ) with i ∈ {0, 1, . . . , q − 1}.

Additionally, prove that ak(Tx) = ak+1(x) for all x ∈ R and k ≥ 1.

To keep notation simpler in our arguments, we will apply T to any x ∈ R. By this, we
mean that we apply the transformation on the image of x under the projection R → R/Z
(i.e. we apply T to {x}). Note that this is well-defined, meaning that two elements x, y
with the same fractional part satisfy Tx = Ty.

The main observation is that if

x = ⌊x⌋+
∞∑
j=1

aj(x)

qj
,

then

qkx = mk + ak(x) +
+∞∑

j=k+1

aj(x)

qj−k

for an integer mk. Thus,

T kx =

+∞∑
j=k+1

aj(x)

qj−k
(mod 1). (2)

If ak(x) = i then we have that

T k−1x =
ak(x)

q
+

∞∑
j=k+1

aj(x)

qj−k+1
=

i

q
+

∞∑
j=k+1

aj(x)

qj−k+1
(mod 1).

Notice that

0 ≤
∞∑

j=k+1

aj(x)

qj−k+1
<

∞∑
j=2

(q − 1)q−j =
1

q
,

which implies that T k−1x ∈ [ iq ,
i+1
q ). The inequality is strict, because not all digits can

be equal to q − 1 from some point onward.

Conversely, assume that T k−1x ∈ [ iq ,
i+1
q ). This is equivalent to

i

q
≤ ak(x)

q
+

∞∑
j=k+1

aj(x)

qj−k+1
<

i+ 1

q
.

As
∑∞

j=k+1
aj(x)

qj−k+1 ∈ [0, 1/q) by our previous calculation, we have

i− 1

q
<

ak(x)

q
<

i+ 1

q
,

which implies ak(x) = i.

The final part of the statement is obvious since if T k−1y ∈ [ iq ,
i+1
q ) we know that ak(y) = i,

so plugging in y = Tx the same statement implies that ak+1(x) = i.

(b) Let c1, . . . , ck be a collection of digits in {0, . . . , q − 1}. Show that there exists a unique
i ∈ {0, . . . , qk − 1}, such that

{a1(x) = c1, . . . , ak(x) = ck} if and only if {x} ∈
[
i

qk
,
i+ 1

qk

)
.
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Derive the equivalence

{an+1(x) = c1, . . . , an+k(x) = ck} if and only if {Tnx} ∈
[
i

qk
,
i+ 1

qk

)
.

We will prove our claim for i = qk−1c1+· · ·+qck−1+ck.We establish the second equivalence
since it implies the first one. We write x in its base-q expansion

x = ⌊x⌋+
+∞∑
j=1

aj(x)

qj
.

and observe that

{qnx} =
an+1(x)

q
+ · · ·+ an+k(x)

qk
+

1

qk+1

 ∑
j>n+k

aj(x)

qj−n−k−1

 . (3)

Observe that the last term in the sum is strictly smaller than 1
qk
. This follows by bounding

all digits aj(x) by q− 1 (this inequality is strict, since there is at least one digit not equal
to q − 1) and then computing the sum of the geometric series. Thus, {qnx} ∈ [ i

qk
, i+1

qk
) if

and only if
qk−1an+1(x) + · · ·+ an+k(x)

qk
=

i

qk

Using the uniqueness of the base q expansion of the integer i, we derive the equalities
an+1(x) = c1, . . . , an+k(x) = ck. The conclusion follows.

(c) We say that a number x is normal in base q if for any finite pattern of digits {c1, . . . , ck} ∈
{0, q − 1}k, we have

ĺım
N→+∞

|{n ≤ N : an(x) = c1, . . . , an+k−1(x) = ck}|
N

=
1

qk
,

where an(x) are the digits of x in its base q expansion. Namely, all patterns with k digits
appear with the same frequency. Show that x is q-normal if and only if the sequence {qnx}
is uniformly distributed mod 1.
Hint: To prove uniform distribution, verify the definition first for intervals of the form
[i/qk, (i+1)/qk) and then approximate a general interval by intervals with endpoints rational
numbers, whose denominators are powers of q.

First of all, we prove that if x is q-normal, then for every k ∈ N and i ∈ {0, . . . , qk − 1}
we have

ĺım
N→∞

1

N

N∑
n=1

Tn1[ i

qk
, i+1

qk
)(x) =

1

qk
. (4)

The left-hand side of (4) can be rewritten as

ĺım
N→∞

∣∣∣{n ≤ N : {qnx} ∈ [ i
qk
, i+1

qk
]
}∣∣∣

N
=

1

qk
.
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By the previous part, there exists a unique choice of digits c1, . . . , ck such that

{qnx} ∈ [
i

qk
,
i+ 1

qk
] ⇐⇒ an+1(x) = c1, . . . , an+k(x) = ck.

Therefore, we can rewrite the last limit as

ĺım
N→+∞

|{n ≤ N : an+1(x) = c1, . . . , an+k(x) = ck}|
N

=
1

qk

which holds by the definition of normality in base q. This proves our claim that (4) holds.

Now, we prove that if A = [a, b) is a sub-interval of [0, 1], then

ĺım
N→∞

1

N

N∑
n=1

Tn1A(x) = µ(A). (5)

Indeed, let P be the collection of Borel sets for which (5) holds. We know that P contains
the family {∅} ∪ {[ i

qk
, i+1

qk
)}k∈N,i∈{0,...,qk−1}. In addition, if A,B ∈ P are disjoint, we have

that A ∪B ∈ P, since

1

N

N∑
n=1

Tn1A∪B(x) =
1

N

N∑
n=1

Tn(1A + 1B(x)) =
1

N

N∑
n=1

Tn1A(x) +
1

N

N∑
n=1

Tn1B(x)

→ µ(A) + µ(B) = µ(A ∪B).

We conclude that P contains all intervals of the form
[

i
qk
, j
qk

)
or, equivalently, all half-

open intervals with rational endpoints whose denominators are powers of q.

Let A = [a, b) ⊂ [0, 1) be an arbitrary interval and let ε > 0. Then, we can find half-open
intervals J1, J2 with endpoints that are rational numbers with denominators powers of q,
such that J1 ⊆ A ⊆ J2 and such that µ(J2) − ε < µ(A) < µ(J1) + ε. This follows from
the fact that the rationals of the form m/qk are dense in [0, 1]. Then, we have

lim inf
N→∞

1

N

N∑
n=1

Tn1A(x) ≥ lim inf
N→∞

1

N

N∑
n=1

Tn1J1(x) > µ(A)− ε

Using J2 in place of J1, we conclude that

lim sup
N→∞

1

N

N∑
n=1

Tn1A(x) < µ(A) + ε.

Since ε was arbitrary, we conclude that

ĺım
N→∞

1

N

N∑
n=1

Tn1A(x) = µ(A).

We can rewrite this as (recall A = [a, b))

ĺım
N→∞

|{n ≤ N : {qnx} ∈ [a, b)}|
N

→ µ(A) = (b− a).
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and, thus, {qnx} is uniformly distributed.

Remark:Here, we note that (5) holds for intervals, but not for general measurable sets.
In particular, for any sequence xn, we can show that there exists a set of measure 1 that
does not contain any of the elements xn.

We now prove the reverse implication. Assume (qnx) is uniformly distributed mod 1. Let
c1, . . . , ck ∈ {0, . . . , q−1} and let i = qk−1c1+ . . .+qck−1+ck. Using part (b), we conclude
that

|{n ≤ N : an+1 = c1, . . . , an+k = ck}|
N

=

∣∣∣{n ≤ N : {qnx} ∈ [ i
qk
, i+1

qk
)
}∣∣∣

N
.

Since qnx is equidistributed, we have

ĺım
N→+∞

∣∣∣{n ≤ N : {qnx} ∈ [ i
qk
, i+1

qk
)
}∣∣∣

N
= µ

([
i

qk
,
i+ 1

qk

))
=

1

qk
.

The conclusion follows.
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